

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 339 (2004) 733-735

Note

The O-polysaccharide of *Pseudomonas syringae* pv. mori NCPPB 1656 is a β -(1 \rightarrow 2)-linked homopolymer of L-rhamnose

George V. Zatonsky,^a Evelina L. Zdorovenko,^a Alexander S. Shashkov,^a Yuriy A. Knirel^{a,*} and Vladimir Ovod^b

^aN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia ^bInstitute of Medical Technology, University of Tampere, Tampere FIN-33101, Finland

Received 24 July 2003; accepted 9 October 2003

Abstract—The O-polysaccharide from the lipopolysaccharide of the phytopathogenic bacterium *Pseudomonas syringae* pv. mori NCPPB 1656 was studied by sugar analysis along with 1H and ^{13}C NMR spectroscopy and found to be a new β -(1 \rightarrow 2)-linked homopolymer of L-rhamnose.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Pseudomonas syringae; Classification; Bacterial polysaccharide structure; Lipopolysaccharide

Strains of the phytopathogenic bacterium Pseudomonas syringae are serologically highly heterogeneous and can be classified in a number of O-serogroups using polyclonal and monoclonal antibodies (see references in Ref. 1). The basis for the classification is the fine structure of the O-polysaccharide chain of the lipopolysaccharide, which has been established for a number of P. syringae strains that belong to various pathovars and various serogroups (Ref. 2 and references cited therein). Typically, O-polysaccharides are linear L- or Drhamnans built up of tri- to tetra-saccharide repeating units or branched polysaccharides having L- or Drhamnan backbones. Now we report on the structure of anO-polysaccharide of another type, which was isolated from the lipopolysaccharide of a serologically distinct strain P. syringae NCPPB 1656.

Mild acid degradation of the lipopolysaccharide of *P. syringae* pv. mori NCPPB 1656 resulted in the O-specific polysaccharide, which was isolated by gel-permeation chromatography. Sugar analysis after complete hydrolysis, including determination of the absolute configura-

tion, showed the presence of L-rhamnose as the sole polysaccharide component.

The 13 C and 1 H NMR spectra of the polysaccharide contained six resonance signals each (Fig. 1). The 13 C NMR spectrum showed one signal for CH_3 –C group at δ 18.4 (C-6 of Rha), one anomeric signal at δ 102.4, and four signals in the δ 73–82 (C-2–C-5). Accordingly, the 1 H NMR spectrum displayed signals for one methyl group at δ 1.36 (3H, d, $J_{5,6}$ 6Hz, Rha H-6), one anomeric proton at δ 5.00 (nonresolved), and four other sugar ring protons at δ 3.22–4.37 (H-2–H-5). Coupling constant values $J_{1,2} < 1$, $J_{2,3}$ 2.5, and $J_{3,4}$ 9.5 Hz determined from the 1 H NMR spectrum were typical of a sugar pyranoside having the *manno* configuration.³

The 13 C and 1 H NMR spectra of the polysaccharide were assigned using two-dimensional COSY and 1 H, 13 C HSQC, respectively (Table 1). In the COSY spectrum, the anomeric signal at δ 5.00 was correlated with a signal at δ 4.37 defined thus as the H-2 signal. In the HSQC spectrum, the C-2 signal gave a correlation with the C-2 signal at δ 81.1 and, hence, the Rha residue is substituted at position 2 (the C-2 chemical shift for a Rha residue that has no substituent at position 2 is δ < 73).⁴ The position of the H-5 and C-5 signals at δ 3.45 and 73.7 demonstrated the β -linkage of the Rha residue

^{*} Corresponding author. Tel.: +7-095-9383613; fax: +7-095-1355328; e-mail: knirel@ioc.ac.ru

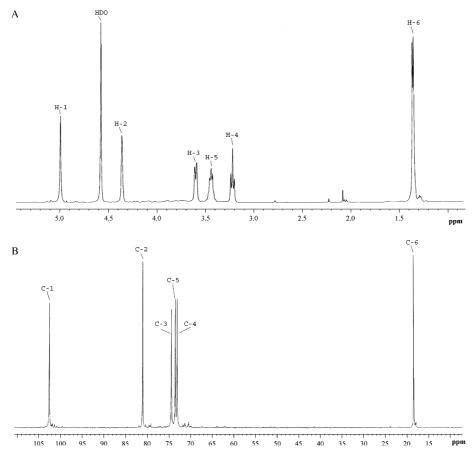


Figure 1. ¹H (A) and ¹³C (B) NMR spectra of the O-polysaccharide of *P. syringae* pv. mori NCPPB 1656.

Table 1. Data of ${}^{1}H$ and ${}^{13}C$ NMR spectra of the homopolysaccharide form *P. syringae* pv. mori NCPPB 1656 (δ , ppm)

Total 1. Syrungue pv. mon 1.c112 1eee (c, ppm)						
H-1	H-2	H-3	H-4	H-5	H-6	
5.00	4.37	3.61	3.22	3.45	1.36	
C-1 102.6	C-2 81.1	C-3 74.6	C-4 73.2	C-5 73.7	C-6 18.4	

(compare chemical shifts δ 3.39 and 73.2 for β -Rha, but δ 3.86 and 70.0 for α -Rha, respectively).⁴

Therefore, the O-polysaccharide of *P. syringae* pv. mori NCPPB 1656 is a homopolymer of L-rhamnose with the \rightarrow 2)- β -L-Rhap-(1 \rightarrow monomer unit, which is unique among O-antigens of this species. Serological studies using monoclonal antibodies that recognize O-polysaccharides from all *P. syringae* strains studied hitherto (Ref. 2 and references cited therein) showed that *P. syringae* pv. mori NCPPB 1656 is a serologically distinct strain and should be classified in a new *P. syringae* serogroup, O10.

1. Experimental

The bacterium was grown on glucose yeast extract agar (medium 54, DSMZ GmbH, Germany) at 22 °C for 24 h.

LPS was isolated as described⁵ and degraded with aq 2% AcOH for 1 h at 100 °C. The carbohydrate portion was fractionated by GPC on a column (56 cm×2.6 cm) of Sephadex G50 (S) using 0.05 M pyridinium acetate buffer pH 4.5 as eluent and monitoring with a differential refractometer (Knauer, Germany) to give a high-molecular-mass polysaccharide and a core oligosaccharide.

The polysaccharide was hydrolyzed with 2 M CF₃CO₂H (120 °C, 2 h), and monosaccharides were identified by GLC as the alditol acetates⁶ on a Hewlett-Packard 5880 instrument equipped with an Ultra 2 capillary column using a temperature gradient of 160 °C (1 min) to 290 °C at 10 °C/min. The absolute configuration of rhamnose was determined by GLC of the acetylated glycosides with (+)-2-octanol.⁷

For the NMR spectroscopy study, samples were deuterium-exchanged by freeze-drying from D_2O . 1H and ^{13}C NMR spectra were recorded with a Bruker DRX-500 spectrometer (Germany) for solutions in D_2O at 55 $^{\circ}C$ using acetone (δ_H 2.225, δ_C 31.45) as internal standard.

References

 Zdorovenko, E. L.; Ovod, V.; Zatonsky, G. V.; Shashkov, A. S.; Kocharova, N. A.; Knirel, Y. A. *Carbohydr. Res.* 2001, 330, 505-510.

- Zdorovenko, E. L.; Zatonsky, G. V.; Kocharova, N. A.; Shashkov, A. S.; Knirel, Y. A.; Ovod, V. Eur. J. Biochem. 2003, 270, 20–27.
- 3. Altona, C.; Haasnoot, C. A. G. Org. Magn. Reson. 1980, 13, 417–429.
- 4. Jansson, P.-E.; Kenne, L.; Widmalm, G. Carbohydr. Res. 1989, 188, 169–191.
- Ovod, V.; Knirel, Y. A.; Samson, R.; Krohn, K. J. Bacteriol. 1999, 181, 6937–6947.
- 6. Sawardeker, J. S.; Sloneker, J. H.; Jeanes, A. R. *Anal. Chem.* **1965**, *37*, 1602–1603.
- 7. Leontein, K.; Lindberg, B.; Lönngren, J. Carbohydr. Res. 1978, 62, 359–362.